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During the filtration of a liquid through a porous medium, the liquid being filtered may enter into a reaction with
the medium, causing a change in the pore volume. Examples of this are the dissolution of salts in soil, the leaching of
rock, etc. The problems discussed in this paper—those of an incompressible liquid entering a circular tube (or
capillary) or of a slit reacting with its walls—are of some practical interest and may alsc serve as the simplest
models of these processes.

1. Motion of liquid in a tube, We let Q(x,t) be the volume flow rate of the liquid, R(x,t) the inner tube radius,
C(x, t) the liquid concentration, C4 the saturation concentration, and t the time; we let the x-axis run parallel to the
tube, We assume that a first-order reaction is occurring between the liquid and the material making up the tube walls,
causing an increase in the tube radius, By "first-order reaction," we mean a reaction whose rate is proportional to
the surface area of the walls in contact with the liquid and to the difference between the solution concentration and the
saturation concentration [1]. !

The tube radius is assumed to increase by dR during a time dt over a length dx, Then, denoting the density of the
tube walls by p;, we have

o1 [ (R 4 dRY? dz — nR%z] = A2nRdz (C, — C)dt ,

from which we find the kinetic equation for the reaction:

R A,
7=9T(C* 0). (1L.1)

Here A is a constant (the salt yield in the case of a dissolution reaction).
The mass~conservation equations for the dissolved substance and for the mass of the moving solution are
— 200+ 2mar(C, — ) =2 (amec), —-L (00)=2 (nrep) (1.2)
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where p is the solution density, which depends on its concentration. We can approximate this dependence by the linear
dependence
p=po (L + y0) = ClCy}, (1.3)
Here p, is the solvent (water) density, and y is a constant. We introduce the dimensionless quantities

a=2A£ﬁ == Cs E= 9 r:a_lgﬂ r=2
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(here Q, = const is the flow rate at the entrance cross section of the tube, and R) = const is the initial tube radius
i. e., the radius at t = Q).

H

To find the unknown functions e(£, 1), r(£,7), q(&,7), we write the system of equations

et g = (= (),

5
- =n(—d, .g.g.:—r(l—c)(%l—}—f), (1.9

If the liquid has not entered the tube before t = 0, or a solution of saturation concentration is in it, and solvent supply
at some flow rate @ begins at t> 0, then the boundary conditions for systems (1.4) are
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g=1, ¢=0 §=0, >0 r=1 E=E§@, T>0. (1.5)

The function £4(7) should satisfy the kinematic condition

Ay 9. T

AT OFEE,, )

=q (£, 7) (&4 (0) = 0) (1.6)
(the characteristic equation for system (1.4)), and is sought along with the functions c(¢, 1), v(£, 7), and q(¢, 7), defined
in the region

E<C8 (), T2>0.

Problem (1.4)—(1.6) is nonlinear, To simplify it, we linearize it by means of the small-perturbation method. We
set

r=1+rc=¢d,g=1+7¢, (1.7)
where the increments r', ¢', and q' are small, so that their products and squares are negligible,

In addition, since the solution concentration density is assumed low, and the increase in the solution density with
increasing concentration is generally not large, we assume here that y = 0.

Substituting (1.7) into the first two equations of system (1.4), introducing the new independent variables x; = £ and
x, = 7 — £, and discarding small quantities of higher orders, we find
de ar’

H:r’—l—l—-c’, s =v(1—¢). (1.8)

Setting g ~ 1 in condition (1.6), we find £x(7) = T the boundary conditions (1.5) for the functions c'(x(,X,) and r'(x;, Xp)
become '

d=0,25=02201r=0z2=02z >0, (1.9)

We let

o0 o]
¢ (1, p) = S e P¥e dy,y, r= S e PEe gy,
0 o

be the Laplace transforms of the functions c' and r'. Multiplying Egs. (1.8) by the kernel of the transform, integrating
over x, from 0 to «, and using the second condition of (1.9), we find

dcl

___=r1+_1_——cl, pr1=1;1<_1_—z:1>,
day p r

Eliminating r; and integrating the resulting differential equation with account for the first condition (1.9), we find
ey (21, p) = pt {0 — exp [—z (1 + v/p)]}.

Performing the inverse transformation [2], we find
c=c (2, &) =1 —e T2V v mz).

From the first equation in system (1.8), we find

et - 90 e—xx]/ﬁ!fz_Jl (2 V vizywa) .
8z, 1

Here Jy(z) and J,(z) are zeroth- and first-order Bessel functions of the first kind, respectively.

Accordingly, the solution of the linearized problem is written
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In particular, we have

(0, T) = !Eim U et Vur—HEVuim—fl=1+or1.
>0

The solid and dashed curves in Fig, 1 show the functions r'(£, 1) and c(¢, 1), respectively, for 7=1,2,3 and v; = 0, L

/ T
or S
ATl
”,
S AL
S A=,
A .
7z i
4
Y/ 50| |
77 }'ch‘? ‘
i -
oy 48 17 17 I0E,
Fig. 1

2. Motion of liquid within an infinite slit, We let 2D be the slit thickness and @ = Q/2 be half the flow rate per
unit slit length. Then the equations for the conservation of mass of the soluble substance in the solid phase and in the
solution, and that for the solution moving within the slit are

o %?:A(C*—C),
2 3
— 3;(010)+ A(C,—C) = a—t(DC): (2.1

— 2 (@)= (Do)

Introducing the dimensionless variables ¢ = Ax/Q,, 7= At/Dy, ¢ = C/Cx, r =D/Dy, v, = Cx/py, 4 =Q/Qy, p =
= 1 — ¢ we can convert (2.1), after some simple transformations, and with account of (1,3), to

ar _ ap ap . 8 L
Fe =0 Gt ge—=— vt —a%=—~(v-a-rn)17. (2.2)

Here Q, is half the solvent flow rate across the cross section having abscissa x = 0, and 2D, is the initial slit opening.
The boundary conditions for system (2.2) are

p=g=1E8=0r=1§=5 ", (2.3)

where £.(7) satisfies Eq. (1.6).

In this case, the functions p and q, defined in the region 0 < & < £4, T > 0, do not depend explicitly on the
variable 7. Setting 8p/87 = 0, we find from system (2.2) that

d 1 —
rE=TEE g e g=wp 1),

Hence, using (2,3), we find

t—y+w=2,
r=1 4 mp (t— 1) 8 = y/(v, + 7). (2.4)

Here 7, = 74(&) is the function inverse to the function £4(7). Substituting the value of p from (2.4), we convert the third
equation in system (2.2) to
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Hence, using (2.3), we find

q . .
d
§=5S—“~L—§=5hﬂ,&QL
11—T~q

(2.5)
In particular, it follows from (2.5) that

lim g (8) = g, = (1 — P8, E—~ oo

i.e., at a sufficiently large distance from the slit, the liquid flow rate decreases, tending toward a constant value
Je < 1. Rewriting (1.6) as

d,

R
daE g (r. 0)=0)
and integrating, we find
E'dg ¢ 4t dg ¢ dq

Accordingly, the solution of this problem is reduced to quadratures and can be solved numerically in the general case,
for arbitrary y and 6 = 0.
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We consider two particular examples,

Example 1. We set v, = y; then § = 0.5, and the calculation of the integrals leads to the dependences

g=0—7y+ yp)2=(1— ycp?,
t=v(d—p—(U—PNhp=r—d—nhd—o,
— .
r,=-1i——,r ln11"¥cc, "=1+T(1—0)(‘E———i——}_—— '\’6).

Example 2, We set y = 0, v, #0; then 6= 0, and

gdp/dE = —p, dq/d§ = —wp.
Hence qdp/dq = 1/v, (p=1, g = 1) and

q=exp [y {p — 1)} = exp (—vz).
Accordingly, we have

exp [vy (p — 1)1dp/dE = —p ;
Integrating this with account for (2.3), we find

784



[>e]

~t
=t [Ei (— 23) — Ei (— ap)] (Ei (—2z)=— S -et—dt>.

x

By analogy with the preceding example, we find
T, = —Inp, r=1+4 upp(t+Inp).

The solid and dashed curves in Fig. 2 show the functions r' = r — 1 and ¢, respectively, for v, = 0,2, The circles
denote curves corresponding to Example 1. In particular, these graphs show that the assumption y = 0 leads to values
of ¢ which are slightly too high and values of r' which are slightly too low.
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